ALGEBRAIC NUMBER THEORY - BACKPAPER

JUNE 2017

Instructions:

- (i) This exam is an open sheet exam you can keep one hand-written A4 sized sheet with you as a cheat sheet (with anything written on it) for your reference.
- (ii) The questions in section 1 are to be answered in True/False, no explanation need be given. All questions are compulsory. Each question carries 1 point.
- (iii) In section 2 answer any three questions out of the four. In section 3 answer any two questions out of the three. Each question carries 9 points.

1.

Question 1. Answer in True/False. Each question carries 1 point.

- (1) Drichlet density of an infinite set of primes is always non-zero.
- (2) Let L/K be a Galois extension of number fields. Then for any prime \mathfrak{P} of L, there is a well defined Frobenius automorphism $\left\lceil \frac{L/K}{\mathfrak{P}} \right\rceil \in Gal(L/K)$.
- (3) Let L_1, L_2 be Galois extensions of a field K and let $L = L_1L_2$. Then L_1L_2 is Galois and there is a natural map $Gal(L/K) \hookrightarrow Gal(L_1/K) \times Gal(L_2/K)$ which is an injection.
- (4) Let L be a subfield of \mathbb{C} which is algebraic, finite dimensional over \mathbb{Q} . Then for any $x \in L$, $N_{L/\mathbb{Q}}(x) = |x|$ where $|\cdot|$ denotes the usual norm in \mathbb{C} .
- (5) Let $\chi: G \to \mathbb{C}^{\times}$ denote a non-trivial character of a finite group G. Then $\sum_{g \in G} \chi(g) = 0$ if G is abelian but not necessarily otherwise.

2.

Answer any three of the following. Each question carries 9 points.

Question 2. Let L be a number field and I be an integral ideal of L. Assume $[L:\mathbb{Q}] = d$.

- (1) Show that there are d elements $a_1, a_2, ..., a_d \in I$, linearly independent over \mathbb{Q} , such that $I = \mathbb{Z}a_1 + \mathbb{Z}a_2 + \cdots + \mathbb{Z}a_d$.
- (2) Show that if $I \subset J$ with J another integral ideal of L, then the number of cosets |J/I| is finite.

Question 3. Solve the equation $x^2 - 2y^2 = 1$ in integers.

Question 4. A Mersenne prime is a prime of the form $2^l - 1$ where $l \in \mathbb{N}$. Show that the Drichlet density of the set of all Mersenne primes is 0.

Question 5. Let $K = \mathbb{Q}[\sqrt{-17}]$. For any prime $p \in \mathbb{Z}$ determine whether p is inert, totally split or ramifies in K in terms of a congruence condition on p.

Answer any two of the following. Each question carries 9 points.

Question 6. Compute the class group of $K = \mathbb{Q}[\sqrt{-55}]$ as follows:

- (1) Use Minkowski bound to show that primes p that lie over (2) and (3) generate the class group.
- (2) Show that if \mathfrak{p}_2 be a prime of K over (2), then $\mathfrak{p}_2^2 \neq 1$ but $\mathfrak{p}_2^4 = 1$.
- (3) Show that any prime of K over (3) is principal, thereby computing the class group.

Question 7. Let $L_1, L_2/K$ be a Galois extension of number fields, and let $L = L_1L_2$ denote the compositum. Then show that a prime \mathfrak{p} of K is totally split in L if and only if it is totally split in L_1 as well as in L_2 .

Question 8. Let $\nu(n) := \begin{cases} 0 & n = 1 \\ k & n = p_1^{a_1} p_2^{a_k} \dots p_k^{a_k} \text{ with } p_i \neq p_j \text{ for } i \neq j \end{cases}$.

Show that

$$\sum_{n=1}^{\infty} \frac{\nu(n)}{n^3} = \zeta(3) \sum_{p \ prime} \frac{1}{p^3}$$

where $\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s}$ denotes the usual zeta function.

Remark (Minkowski Bound). For any fractional ideal $I \subset K$, there is an integral ideal $J \in [I]$ (where [I] denotes the class of I in the class group) such that:

$$N_{K/\mathbb{Q}}(J) \le \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|\Delta(K/\mathbb{Q})|}$$

where n is the degree of K/\mathbb{Q} , there are 2s complex embeddings of K in \mathbb{C} , and $\Delta(K/\mathbb{Q})$ is the discriminant of K.